Superlinear Schrödinger–Kirchhoff type problems involving the fractional p–Laplacian and critical exponent

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Solvability of Concave-Convex Quasilinear Elliptic Systems Involving $p$-Laplacian and Critical Sobolev Exponent

In this work, we study the existence of non-trivial multiple solutions for a class of quasilinear elliptic systems equipped with concave-convex nonlinearities and critical growth terms in bounded domains. By using the variational method, especially Nehari manifold and Palais-Smale condition, we prove the existence and multiplicity results of positive solutions.

متن کامل

Critical exponent of the fractional Langevin equation.

We investigate the dynamical phase diagram of the fractional Langevin equation and show that critical exponents mark dynamical transitions in the behavior of the system. For a free and harmonically bound particle the critical exponent alpha(c)=0.402+/-0.002 marks a transition to a nonmonotonic underdamped phase. The critical exponent alpha(R)=0.441... marks a transition to a resonance phase, wh...

متن کامل

Solutions for the quasi-linear elliptic problems involving the critical Sobolev exponent

In this article, we study the existence and multiplicity of positive solutions for the quasi-linear elliptic problems involving critical Sobolev exponent and a Hardy term. The main tools adopted in our proofs are the concentration compactness principle and Nehari manifold.

متن کامل

Variational Problems Involving a Caputo-Type Fractional Derivative

We study calculus of variations problems, where the Lagrange function depends on the Caputo-Katugampola fractional derivative. This type of fractional operator is a generalization of the Caputo and the Caputo–Hadamard fractional derivatives, with dependence on a real parameter ρ. We present sufficient and necessary conditions of first and second order to determine the extremizers of a functiona...

متن کامل

p-Laplacian problems with critical Sobolev exponent

We use variational methods to study the asymptotic behavior of solutions of p-Laplacian problems with nearly subcritical nonlinearity in general, possibly non-smooth, bounded domains.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Nonlinear Analysis

سال: 2019

ISSN: 2191-950X

DOI: 10.1515/anona-2020-0021